Technical Documentation Wind Turbine Generator Systems GE 2.5/88

Technical Data

GE Energy

Gepower.com

Visit us at www.gewindenergy.com

All technical data is subject to change in line with ongoing technical development!

Copyright and patent rights

This document is to be treated confidentially. It may only be made accessible to authorized persons. It may only be made available to third parties with the express written consent of GE Energy.

All documents are copyrighted within the meaning of the Copyright Act. The transmission and reproduction of the documents, also in extracts, as well as the exploitation and communication of the contents are not allowed without express written consent. Contraventions are liable to prosecution and compensation for damage. We reserve all rights for the exercise of commercial patent rights.

© 2005 GE Energy. All rights reserved.

Table of Contents

1	Tower	5
2	Rotor	5
3	Rotor Blades	5
4	Pitch System	
5	Hub	
6	Main Bearing	
7	Main Gearbox	6
8	Yaw System	
9	Brake System	
10	Generator	
11	Converter System	
12	Conditions for Grid Connection	
13	Design Limits	
14	Permissible Ambient Temperatures	
15	Weights (approx.)	
16	Oils and Greases used	
	Prive Train:	
Υ	aw System:	11
	itch System:	
	ienerator:	
	ransformer:	

1 Tower

Type: Tubular steel tower

Wind zone: DIBt WZ III / IEC TC IIa

Hub height: 85 m

Diameter top: 3075 mm

Diameter bottom: 4300 mm

2 Rotor

Diameter: 88 m

Number of rotor blades: 3

Swept area: 6082 m²

Rotor speed range: $5.5 - 16.5 \text{ min}^{-1}$

Rotational direction: Clockwise looking downwind

Maximum speed 76 m/s

of the blade tips:

Orientation: Upwind

Speed regulation: Pitch-controlled

Aerodynamic brake: Blades in feathering position

Cone angle: 3°

Inclination angle of rotor axis: 4°

3 Rotor Blades

Design: GE Energy

Length (blade root – tip): 42.7 m

Material: Fiber glass – epoxy resin

4 Pitch System

Principle: Single blade pitch control

Drive system, motor type: Electric, DC motors

Redundant safety feature: Battery system

Pitch drive: Planetary gear

Pitch bearing: Double-row four-point contact bearing

5 Hub

Material: Ductile cast iron, EN-GJS-400-18U-LT

Corrosion protection: Sandblasted, multilayer paint system C5-M-long

to DIN EN ISO 12944-2

6 Main Bearing

Housing: Ductile cast iron, EN-GJS-400-18U-LT

Thrust bearing: Double row taper roller bearing

Floating bearing: Cylindrical roller bearing

Lubrication: Grease-lubricated

7 Main Gearbox

Rated power: 2750 kW

Type: Multi-stage system consisting of at least 2 planetary stages

and one helical gear stage

Gear ratio: $\approx 1:100$

Lubrication: 1 mechanical and 1 electrical pump

Fluid volume: ≈ 500 liters (gearbox incl. cooling system)

Cooling: Oil cooler mounted in the nacelle enclosure

8 Yaw System

Number of yaw drives:

Drive system, motor type: electrical, asynchronous

Voltage: 690 V / 575 V

Frequency: 50 Hz / 60 Hz

Yaw rate: 0.5 °/sec

Yaw gear: Multi-stage planetary gear

9 Brake System

Primary brake system: Single blade pitch control (battery back-up)

Secondary brake system: Single blade pitch control (battery back-up)

Holding brake: Hydraulically driven brake caliper on high-speed shaft

10 Generator

Type: Electrically excited synchronous machine

Rated output: 2.64 MW

Rated speed: 1650 min⁻¹

Rated voltage: 690 V

Apparent power: 2780 kVA

Frequency at rated output: 82.5 Hz

Protection class: IP54

Insulation class:

Function type: S1

Standard: EN 60034-1

Cooling system: Air-to-air heat exchanger

11 Converter System

Type: 4-quadrant IGBT converter

for electrically excited synchronous generators

Maximum stator current: 2450 A

Maximum line current: 2620 A

Rated voltage, line side: 690 V + /-10 %

Rated frequency: 50 Hz / 60 Hz

 $\cos \varphi$: 0.90 inductive to capacitive

Protection class of the electronics: IP54

Switching rate: approx. 2.5 kHz

Cooling system: Water cooling with water-to-air heat exchanger r

or air cooling

12 Conditions for Grid Connection

Rated grid voltage: 10,000 – 24,000 V (optionally up to 36,000 V)

Rated voltage on the converter

side:

690 V +/-10 %

Rated grid frequency: 50 Hz / 60 Hz

Permissible tolerance of the grid

frequency:

+/- 5%

Tolerances of the grid voltage: +15% to +20% for 0.1 sec

+10 % to +15 % for 1 sec +/-10% continuously -10 % to -15 % for 10 min -15 % to -25 % for 10 sec -25 % to -30 % for 1 sec

Impedance of the transformer for

the grid connection:

6 %

Transformer connection: Dyn5 or Dyn11

Transformer power: 2800 kVA

13 Design Limits

Design guideline and wind class:

DIBt WZ III / IEC TC IIa

Rotor diameter:

88 m

Hub height:

85 m

Average wind speed

at hub height:

8.5 m/s

Turbulence intensity (normal wind 18 %

turbulence model):

Survival wind speed:

59.5 m/s

Cut-in wind speed:

3.5 m/s

Cut-out wind speed:

25 m/s

2.5 MW

Rated power output

(at medium voltage level):

Minimum ambient temperature

operation / survival:

- 10 °C / - 20 °C

Maximum ambient temperature

operation and survival:

+ 40 °C

Noise emission

(at 95 % of rated power)

 $< 106 \, dB(A)$

Noise reduced operation:

< 105 dB(A)

14 Permissible Ambient Temperatures

	Operation:	Survival:	
Standard conditions:	- 10 °C < t < + 40 °C	- 20 °C < t	
Cold weather operation:	- 30 °C < t < + 40 °C	- 40 °C < t (o	ptional)
Hot weather operation:	- 10 °C < t < + 50 °C	(c	optional)

GE Energy Technical Data

15 Weights (approx.)

Single rotor blade: 8,300 kg

Nacelle with main bearing and

yaw system:

< 55,000 kg

Gearbox: 20,000 kg

Generator: 9,000 kg

Hub (without blades): 26,000 kg

16 Oils and Greases used

Drive Train:

Grease lubrication of main bearing: FAG Arcanol LOAD 400

approx. 20 kg

Gearbox:

Type of oil and quantity: Optimol Optigear Synthetic A 320

500 liters (gearbox incl. cooling system)

Filters: 2 combination filters 10/25 µm

Hydraulic system for brake:

Type of oil and quantity: Mobil DTE 25

approx. 2.5 liters

Hydraulic system for rotor lock:

Type of oil and quantity: Mobil DTE 25

approx. 35 liters

Technical Data GE Energy

Yaw System:

Planetary gear train of SMEI, Zollern, Liebherr Gear:

Mobil SHC 630 Type of oil and quantity:

approx. 15 liters

Fuchs Gleitmo 585 K Grease lubrication of yaw bearing:

Grease lubrication of gear ring and pinion:

Ceplattyn BL / Fuchs Gleitmo 585 K

Hydraulic system of brake:

Type of oil and quantity: Mobil DTE 25

approx. 10 liters

Pitch System:

Planetary gear train of SMEI, Zollern, Liebherr Gear:

Tupe of oil and quantity: Mobil Mobilgear SHC XMP 460

approx. 3.5 liters

Avia Avilub CTK (white) Grease lubrication of pitch bearing:

Grease lubrication of gear ring and pinion:

Ceplattyn BL/ Avia Avilub CTK (white)

Generator:

ESSO Unirex S2 Grease lubrication of the bearing:

Transformer:

Dow Corning 561 Silicone Transformer Liquid Silicone oil transformer:

approx. 1250 l (transformer in the tower)

Oil-immersed transformer: (transformer in separate transformer

station)

Nutro 10 GBN approx. 1690 l